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LETl'ER TO THE EDITOR 

Critical properties of non-equilibrium crumpled systems 

J B C Garcia, M A F Gomes, T I Jyh and T I Ren 
Departamento de Fisica, Univenidade Federal de Pemambuco, 50739 Recife, Pemambuco, 
Brazil 

Received 25 October 1991 

Abstnd. Geometrical and statistical properties of non-equilibrium crumpled surfaces ( C S )  

and crumpled wires (CW) are investigated and compared. n e  relationship between the 
geodesic distance x and the Pythagorean distance I in cs and cw and their dependence 
on the linear (unmmpled) size Lis studied. Among other results we show that the moments 
of the probability distribution P(x,  r )  for c s  requires an infinite hierarchy of critical 
exponents. 

The statistical physics and the geometric properties of crumpled manifolds (CM) is at 
present a subject of wide interest. Besides their intrinsic interest, the study of CM has 
connections with a number of areas varying from polymer, membrane and interface 
physics to gauge theories. The literature on CM concerns to a great extent the properties 
of self-avoiding model manifolds at equilibrium [l]. This letter deals, in contrast, with 
the statistical physics and the geometric properties of non-equilibrium CM (NECM). 

Geometrical and physical properties of NECM obtained from random and irrevers- 
ible compactification of paper sheets, aluminium foils and metallic threads have been 
recently studied 12-41 and we refer to [3] for additional insight into the topic. The 
non-equilibrium behaviour of crumpled surfaces (cs) [Z, 31 and crumpled wires (cw) 
[4] is analysed here in further detail, and new critical phenomena associated with these 
systems are discussed. A schematic classification of non-equilibrium crumpling pro- 
cesses is also suggested in the sixth paragraph. The results presented in this letter are 
based on experimental measurements obtained from large ensembles of cs and cw 
with approximately one thousand objects. The experimental procedures are similar to 
those discussed in the first paragraphs of the recent references [3,41. 

In [3] we studied how the three-dimensional 'air' or Pythagorean distance r(Q, Q) 
between two points Q and Q on a cs transforms into the internal or geodesic distance 
x(Q, Q'), with probability P(x, r ) ,  after the unfolding of the cs on a plane. Among 
other results, we found in [3] that the average of x, (x). scales as (x)- r"', for a fixed 
linear (uncrumpled) size L of the cs. Here we present new scaling relations based on 
an extension of the experimental procedure used in [3]. Then, instead of considering 
a single value of L as in [3], we work in this letter with different values of the size L. 
Firstly, we have obtained that (x)- L0.69*0.0' , 5 cm 6 L 6 66 cm, irrespective of r. 
Equivalently we can write (x)- Ra.n6*o." , where R - Loon is the average radius of the 
cs [3]. Thus, if we consider the dependences of (x) on both r and L (or R )  we obtain 

(x)(cs) - r'/3Lo.69- r'/3R0.n6, (1) 

By definition the Pythagorean and the internal (geodesic) distances in CM satisfy r < (x). 
In principle, it is natural to suppose that (x)- r"RB and thus (x)(r = R )  - re+@ > r 
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leads to a+B> 1, or f i >  I-a =f for cs, as shown in (1). Secondly, the standard 
deviation U% of x with respect to  the average ( x )  has a strong dependence on L, and 
scales as U= - L1.22"o.02 with a coefficient of correlation of 0.99 irrespective of r. Thus, 

goes to the infinity. Thirdly, the binned probability distribution P(x ,  r )  for cs can be 
approximated by the power law Po(x, r )  - x - ~ ,  with .$ = 1.4* 0.3 provided r < R This 
fit does not depend on L, nor on the number of bins used to analyse the distribution. 

For crumpled balls made of wires with distinct compositions of lead and tin, and 
lengths L in the interval 1 m <  L S  10 m, we have now obtained the following scaling 
relations involving the geodesic and the Pythagorean distances. 

, irrespective of L; i.e. (x) is independent of r ( r >  0) (or possibly 
has a logarithmic dependence on r ) ,  for L fixed in the interval considered. 

(ii) ( x ) -  L I . O ' * O . ~  ,for r fixed in the interval 0.05 S r / 2 R  S 1. R is the average radius 
of the cw. Using the scaling L- R2-" valid for c w  [4] we can analogously write 

. If we consider the dependences of ( x )  on r and L we may write in 
correspondence with (1) 

( 2 )  
(iii) The standard deviation ux of x with respect to the average ( x )  is also indepen- 

dent of r ;  it behaves as ux - ro.01*o.04. 
(iv) i i ie  minimum x, x,,, in a series of a hundred vaiues of the geodesic iength 

(with L fixed) depends on r. More precisely, we observed that xmin-rdm,n, with 

(v) The binned probability distribution P(x,  r )  for c w  can be approximated by the 
power law Po - x-', with 6 = 0.75* 0.25, irrespective of r < R, L, and the number of 
bins used to analyse the distribution. 

It is interesting to compare the hierarchy of behaviours of the average geodesic 
distance versus the Pythagorean distance for cs, cw, and other mathematical structures. 
For a smooth spherical surface, for example, ( x )  is trivially given by the concave 
function ( x ) = 2 R s i K 1 ( r / 2 R ) ,  where R is the radius of the sphere (curve a in 
figure 1). Differently, fof cs (with the linear size L or the average radius R fixed) ( x )  
is given by the convex function ( x )  - r'/' as shown in figure 1, curve b. For a cw, ( x )  
is independent of r (or presents a logarithmic dependence on r )  as shown in figure 1; 
curve c. These three categories of behaviour for ( x ) ( r )  are limited from below by the 
straight line ( x )  = r (dashed line in figure 1) corresponding to the plane geometry or 
the Rat state, and from above by the line ( x ) ( r > O ) = m  (dotted line in figure 1) 
corresponding to any mathematical fractal. 

As discussed in the third and fourth paragraphs, the binned probability distribution 
P(x ,  r )  for cs and c w  can be described approximately by Po-x-', irrespective of 
r < R, L, and the number of bins. If we consider this approximation, we obtain for 
the average geodesic distance in cs and cw: 

the relative fluctuations u x / ( x )  diverges for r fixed as L0.53"0.07 ( R  o.66*o.09 ) as L ( R )  

(i) (x)- r-o.02*o.03 . 

( x ) -  ~ 2 . 7 8 + 0 . l 7  

(x)(cw) - roL1 - r0R2-75. 

dmjn= -0.15*0.17. 

where .$# 1 and r is fixed ( r < R ) .  In (3) a =A for cs and a = 1 for cw. There are 
three important cases to be considered in connection with (3): (i) for I< 1, and L>> r, 
we have ( x ) -  roL1; this is the behaviour observed for c w  (fourth paragraph). (ii) If 
1 < .$ < 2, L >> r, we obtain (x)- r t - l  L--t+2. If 6 = we get ( x )  - r"3L2/3. , t h  IS IS ' the same 
as (1) which describes the behaviour of (x) as a function of r and L for cs. (iii) Finally, 
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Figore 1. The dependence of the average geodesic distance (x) on the Pythagorean distance 
r for spherical surfaces (a), crumpled surfaces (b), and crumpled wires (c). R is the radius 
of the sphere in (a) and the ensemble average radius in (b). Dashed and dotted lines 
represent the behaviour of ( x ) ( r )  for the flat state ((x)= r ) ,  and for the mathematical 
fractals ((x)=O, for r = O ,  and (x)=m Vr>O)  respectively. denotes experimental data. 

for c> 2, L>> r, we have (x)- rlLo, which describes the flat phase. Thus, in general 
we have (x)- P L Y ,  with a + y = 1, r<< L. Within the approximation considered in this 
paragraph, the dependence of the exponents a and y as a function of the exponent 
.$ suggests the classification of the crumpling processes shown in figure 2. 

0 A 1  A 2 I 

Figure 2. The dependence of the critical exponents 01 (continuous line) and y (dashed 
line) on the exponent t for the approximation discussed in the sixth paragraph. The dotted 
line refen to the value OL =a associated with the mathematical fractals. Triangles (A) and 
venical dashed lines designate respeclively the average t and the intemal of variability of 
t for cw and cs (experimental data). 
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In order to obtain a more detailed understanding of the crumpling processes in 
surfaces we calculated the moments 

M , ( r ) = ~ p ( x , r ) x *  (4) 
r 

using the (binned) experimental distribution P ( x ,  r )  that connects the Pythagorean ( r )  
and the geodesic ( x )  distances in cs. We have observed that different moments Mk 
scale as different power laws Mk - r6: where the critical exponents 6, are given by 
the continuous line shown in figu're 3. We note in passing that if we approximate the 
experimental P(x ,  r )  in (4) by the power law P,-x-', e=  1.4, as mentioned in the 
third paragraph, we obtain Mk + MO, - r60*, with Soh = -c+ k + 1 = -0.4+ k, for k < 
6- 1 = 0.4, and Sok = 0, for k > 5 - 1 = 0.4. This approximation for the Sh is shown in 
figure 3 (dotted lines). The dashed line in figure 3 refers to a better approximation to 
the exponents 8,. It is obtained after the substitution 

with a =a, B=O.O55, in ( 5 ) .  This distribution function satisfies P'+O for x +  r, and 
P'-x?"', for large x and small r. Both conditions are observed by the experimental 
distribution P ( x ,  r )  within the statistical uncertainties. Equation ( 5 )  is a good approxi- 
mation to P(x ,  r ) ,  if r < R. This is confirmed in figure 4 where we exhibit the best fits 
( 5 )  to the experimental distribution P ( x , r )  for r / L = & ;  &,; 6;  ih and 6. The 
average radius of the ensemble of cs in this case satisfies R/L=0.0654. All the fitted 
data collapse on a single curve of the form ( 5 )  with B =0.055*0.001 irrespective of r. 

The general subject discussed in this letter has been the scaling properties of 
non-equilibrium crumpled systems with the topology of the line (cw) and of the plane 
(cs). The statistical physics of these systems is complex and not well understood. Thus, 
for example, it is not clear if the diffusion-limited growing self-avoiding surfaces 

h 

Flpore 3. The critical exponents SI associated with the scaling relations MI - r',, where 
Mk are the moments defined in (4). Continuous, dashed, and dotted lines refer respectively 
to MI obtained with the experimental P(x ,  r ) ,  with the approximation ( 5 ) .  and with the 
approximation P- Po- x-t. 
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Figure 4. Thc best fit 10 the expenmenu1 dirtnhution P(x, r J  using thc dirtnhution P t x .  r l  
glren in (51 for diffcrenl values or the Pythagorean diciance I The P ( x J  for different values 
of I collapse on the single C U W ~  rhaun  in the hgurc 

(DLSAS) of Debierre and Bradley [SI present the critical properties of cs discussed 
here. INSAS and cs have the same fractal dimension within the statistical uncertainties. 
cw and cs are new paradigms of disordered systems. They are also an experimental 
manifestation of ill-condensed matter and self-organized criticality [ 6 ] .  I t  is interesting 
to observe that cs have a kind of complementary relationship with Plateau's problem 
[7], one of the deeper problems of the calculus of variations. Both problems refer to 
a surface S with area A bounded by a contour C. In Plateau's problem C is fixed and 
A vanes, while in cs A is fixed and C vanes. We hope that the results presented in 
this letter will lead to further investigations into the physics of non-equilibrium 
crumpled systems. 

This work was partially supported by Conselho Nacional de Desenvolvimento Cien- 
tifico e Tecnol6gico and Financiadora de Estudos e F'rojetos of Brazil. 
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